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Abstract

In this work, we derive a continuum macroscopic traffic flow model from a microscopic car-
following model. The microscopic model is based on a non-decreasing and positive optimal veloc-
ity function and a reaction time parameter [1]. The corresponding macroscopic model results in a
convection-diffusion equation. More precisely, the convection is described by the optimal velocity
while the diffusion term depends on the reaction time. The macroscopic model is discretized using
a Godunov scheme and the linear stability conditions for the homogeneous solution of the numerical
schemes are provided. The conditions match the ones of the car-following model for specific values of
the spatial discretisation step. Simulations are carried out with sufficiently small space and time dis-
cretisation to hold the CFL condition. The results show that the dynamics of the microscopic model
are well recaptured by the macroscopic approach even if the homogenization assumption, see [2],
does not hold (cf. Figure 1). The transition to collision-free stop-and-go dynamics, that is a crucial
characteristic of the microscopic model when the reaction time is sufficiently large, is also obtained
with the macroscopic model. In the inhomogeneous case, both models describe limit-cycles in station-
ary states, with hysteresis curves in the fundamental flow/density diagram (see [3, 4]). Consequently,
a scattering in this relationship occurs (see also [5, 6]), for which we compute the bounds. Finally
comparison of these bounds to real pedestrian and road traffic data are presented.
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Figure 1: Trajectories of the microscopic model (cyan curves) and the time series for the density by cell for the
discrete macroscopic model (gray levels) for perturbed initial conditions.
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